
Normed Linear Space 1.1:   Let X  be a vector space over 
either the scalar field ℝ of real numbers or the scalar 
field ℂ of complex numbers. Suppose we have a function  
‖∙‖ : X → [0,∞) such that 
 
(1) ‖𝑥‖  = 0 if and only if x = 0,       (definiteness) 
 
(2) ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖ for all x, y ∈ X,    
       (triangle inequality)                                           and 
 
(3) ‖α𝑥‖  = |α| ‖𝑥‖for all scalars α and vectors x. 
        (homogeneity)                                         MacCluer, p. 2. 

 

 

 

 

 

 

Metric Space 1.9:  A metric space is a set X with a 
function d(·, ·) : X ×X → [0,∞) satisfying, for x,y, and  
z in X, 
 
(1) d(x,y) = 0 if and only if x = y,          (definiteness) 

 
(2) d(x,y) = d(y,x), and                   (symmetry) 
 
(3) d(x,y)+d(y, z) ≥ d(x, z).          (triangle inequality) 

                                                                MacCluer, p. 5.     

 
 
 
 
Cauchy Sequence 1.10:  Let X  be a metric space.  A 
sequence {xn} in X  is said to be a Cauchy sequence if it 
has the following property: Given any ε > 0 there exists 
N such that if n, m ≥ N, then d(xn, xm) < ε . 
                                                                                  MacCluer, p. 5. 

 

 

 

 

 

 

 

 

 

 

Complete Metric Space 1.11:  A metric space is said to be 
complete if every Cauchy sequence in X converges in X. 
                                                                                      MacCluer, p. 5. 
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Banach space 1.12:  Let X  be a normed linear space. If X 
is complete in the metric d defined from the norm by 
d(x,y) =‖𝑥 − 𝑦‖, we call X a Banach space. 
                                                                                 MacCluer, p. 5. 

 
 
 
 
 
 
 
 
 
 
 
 
Inner Product 1.13:  Let X  be a vector space over C.  An 
inner product is a map  〈·,·〉: X ×X → ℂ satisfying, for  
x, y, and z in X and scalars α ∈ ℂ, 
 
(1)  〈𝑥, 𝑦〉 = 〈𝑦, 𝑥̅̅ ̅̅̅〉 for all x, y  in X, 
            (hermitean,  𝑥, 𝑦̅̅ ̅̅̅ denotes complex conjugation.)  
 

(2)  〈𝑥, 𝑥〉 ≥ 0, with 〈𝑥, 𝑥〉 = 0 (if and) only if x = 0, 
            (positive-definiteness)  
 

(3)  〈𝑥 + 𝑦, 𝑧〉 =  〈𝑥, 𝑧〉 + 〈𝑦, 𝑧〉, and 
 
(4)  〈α𝑥, 𝑦〉 = α〈𝑥, 𝑦〉.        ( 3 & 4 together = sequilinearity) 
                                                            MacCluer, p. 6. 

 

 

Proposition 1.14:  If 〈·,·〉 is an inner product on a vector 
space X, then for all x  and y  in X we have 
                |𝑥, 𝑦|2  ≤  〈𝑥, 𝑥〉〈𝑦, 𝑦〉. 
                                                                                        MacCluer, p. 7. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proposition  1.15:  If 〈·,·〉 is an inner product on a vector 
space X, then 

                           ‖𝑥‖ ≡ 〈𝑥, 𝑥〉
1

2  
                                                                            MacCluer, p. 7. 
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Hilbert space 1.16:  A (complex) Hilbert space ℋ is a 
vector space over ℂ with an inner product such that ℋ is 
complete in the metric  

        d(x, y) = ‖𝑥 − 𝑦‖ = 〈𝑥 − 𝑦, 𝑥 − 𝑦〉
1

2 . 
                                                                                MacCluer, p. 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proposition 1.18:  If f is a analytic function in some 
closed disk B(a,R), then 

𝑓(𝑎) =
1

𝜋𝑅2
∫ 𝑓 𝑑𝐴

𝐵(𝑎,𝑅)

. 

                                                                            MacCluer, p. 9. 
 
 
 
 

   
 
 
Corollary 1.19:  Fix w ∈ D.  For every 𝑓 ∈ 𝐿𝑎

2 (𝐷)  
 we have 

|𝑓(𝑤)| ≤
1

1 − |𝑤|
‖𝑓‖𝐿𝑎

2 (𝐷) . 

                                                                                               MacCluer, p. 9. 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
 
Theorem 1.20:  The Bergman space 𝐿𝑎

2 (𝐷) is a Hilbert 
space.             
                                                                     MacCluer, p. 10. 
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Orthogonality 1.21:  Given vectors f ,g  in a Hilbert space 
ℋ, we say that f  is orthogonal to g, written f ⊥ g, if  
〈𝑓, 𝑔 〉 = 0. For sets A and B in ℋ we write A ⊥ B  if  
〈𝑓, 𝑔 〉 = 0 for all f ∈ A and g ∈ B.  Finally, 𝐴⊥ is the set of 
all vectors f ∈ ℋ such that f ⊥ g  for all g  in A; for any set 
A  this is always a subspace of ℋ, moreover since  
𝐴⊥  = ⋂ {𝑎}⊥

𝑎∈𝐴 , 𝐴⊥ is a closed subspace by continuity of 
the inner product (see Exercise 1.8). 
                                                                            MacCluer, p. 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Proposition 1.22:  If 𝑓1, 𝑓2, ⋯ , 𝑓𝑛, are pairwise orthogonal 
vectors in a Hilbert 
space, then 
‖𝑓1 + 𝑓2 + ⋯ + 𝑓𝑛‖2 = ‖𝑓1‖2 + ‖𝑓2‖2 + ⋯ + ‖𝑓𝑛‖2. 
                                                                                                 MacCluer, p. 11. 
 
 
 

 
 
Proposition 1.23:  Every nonempty, closed convex set K 
in a Hilbert space ℋcontains a unique element of 
smallest norm. Moreover, given any h ∈ ℋ, there is a 
unique 𝑘0 in K such that 
‖ℎ − 𝑘0‖ = 𝑑𝑖𝑠𝑡(ℎ, 𝐾) ≡ 𝑖𝑛𝑓{‖ℎ − 𝑘‖: 𝑘 ∈ 𝐾}. 
                                                                                              MacCluer, p. 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Theorem 1.24:  Let M  be a closed subspace of a Hilbert 
space ℋ. There is a unique pair of mappings  
P : ℋ→ M  and Q : ℋ→ 𝑀⊥ such that x =Px+Qx for all  
x ∈ ℋ. Furthermore, P and Q have the following 
additional properties: 
(a) x ∈ M ⇒ Px = x and Qx = 0. 
(b) x ∈  𝑀⊥ ⇒ Px = 0 and Qx = x. 
(c) Px  is the closest vector in M  to x. 
(d) Qx  is the closest vector in  𝑀⊥ to x. 
(e) ‖𝑃𝑥‖2 + ‖𝑄𝑥‖2 = ‖𝑥‖2 for all x. 
(f) P and Q  are linear maps. 
                                                                           MacCluer, p. 12.   
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Corollary 1.25:  If M  is a closed, proper, subspace of  ℋ, 
then there exists a nonzero vector y  in ℋ with y ⊥ M. 
                                                                                             MacCluer, p. 15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Linear Functional 1.26:  If X is a normed linear space 
over ℂ, a linear functional on X  is a map Λ : X → ℂ 
satisfying Λ(αx+βy) =αΛ(x)+βΛ(y) for all vectors x and 
y  in X and all scalars α and β . 
                                                                      MacCluer, p. 15. 
 
 
 
 
 
 

 
Bounded Linear Functional 1.27:  A bounded linear 
functional on a normed linear space X is a linear 
functional Λ : X → ℂ for which there exists a finite 
constant C satisfying |Λ(𝑥)| ≤ C ‖𝑥‖ for all x ∈ X. 
                                                                              MacCluer, p. 16.    
 
 
 
 
 
 
 
 
 
 
 
 
 
Proposition 1.28:  If X is a normed linear space, and  
Λ : X → C is a linear functional, 
then the following are equivalent: 
 
(a) Λ is continuous. 
 
(b) Λ is continuous at 0. 
 
(c) Λ is bounded. 
                                                                                             MacCluer, p. 16. 
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Theorem 1.29:  Every bounded linear functional Λ on a 
Hilbert space ℋ is given by inner product with a 
(unique) fixed vector ℎ0 in ℋ: Λ(h) = h, ℎ0. Moreover, 
the norm of the linear functional Λ is‖ℎ0‖. 
                                                                                               MacCluer, p. 17. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Lemma 1.30:  Let P : ℋ → M  be the orthogonal 
projection of a Hilbert space ℋonto a closed subspace M 
of ℋ. We have 〈𝑓, 𝑃𝑔〉 = 〈𝑃𝑓, 𝑔〉 for all vectors f and g in 
ℋ. 
                                                                                  MacCluer, p. 18. 

 
 
 
 

 
 
Orthonormal Set 1.31:  An orthonormal set in a Hilbert 
space ℋ is a set ℇ  with the properties: 
 
(1) for every e ∈ ℇ, ‖𝑒‖. = 1, and 
 
(2) for distinct vectors e and f  in ℇ ,  〈𝑒, 𝑓〉   = 0. 
                                                                              MacCluer, p. 19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Orthonormal Basis 1.32:  An orthonormal basis for a 
Hilbert space ℋ is a maximal orthonormal set; that is, an 
orthonormal set that is not properly contained in any 
orthonormal set. 
                                                                                                 MacCluer, p. 19. 
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Theorem 1.33:   If {𝑒𝑛}1

∞ is an orthonormal sequence in a 
Hilbert space ℋ, then the following conditions are 
equivalent: 
(a) {𝑒𝑛}1

∞ is an orthonormal basis. 
(b) If h ∈ ℋ and h ⊥ 𝑒𝑛 for all n, then h = 0. 
(c) For every h ∈  ℋ, h = ∑ 〈ℎ, 𝑒𝑛〉𝑒𝑛

∞
1 ; equality here   

       means the convergence in the norm of ℋof the  
       partial sums to h. 
(d) For every h ∈ ℋ, there exist complex numbers 𝑎𝑛 so  
       that h = ∑ 𝑎𝑛𝑒𝑛

∞
1 . 

(e) For every h ∈ H , ∑ |〈ℎ, 𝑒𝑛〉|2 = ‖ℎ‖2.∞
1  

(f)  For all h and g in H , ∑ 〈ℎ, 𝑒𝑛〉〈𝑒𝑛, 𝑔〉∞
1 = 〈ℎ, 𝑔〉. 

                                                                                               MacCluer, p. 20. 
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