Normed Linear Space 1.1: Let *X* be a vector space over either the scalar field \mathbb{R} of real numbers or the scalar field \mathbb{C} of complex numbers. Suppose we have a function $\|\cdot\| : X \to [0,\infty)$ such that

(1) ||x|| = 0 if and only if x = 0, *(definiteness)*

- (2) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$, (triangle inequality) and
- (3) $\|\alpha x\| = |\alpha| \|x\|$ for all scalars α and vectors x. (homogeneity) MacCluer, p. 2.

Cauchy Sequence 1.10: Let *X* be a metric space. A sequence $\{x_n\}$ in *X* is said to be a *Cauchy sequence* if it has the following property: Given any $\varepsilon > 0$ there exists *N* such that if *n*, $m \ge N$, then $d(x_n, x_m) < \varepsilon$.

MacCluer, p. 5.

Metric Space 1.9: A *metric space* is a set *X* with a function $d(\cdot, \cdot) : X \times X \rightarrow [0, \infty)$ satisfying, for *x*, *y*, and *z* in *X*,

(1) d(x,y) = 0 if and only if x = y, (definiteness) (2) d(x,y) = d(y,x), and (symmetry) (3) $d(x,y)+d(y,z) \ge d(x,z)$. (triangle inequality) *MacCluer*, p. 5. *Complete Metric Space 1.11:* A metric space is said to be *complete* if every Cauchy sequence in *X* converges in *X*. *MacCluer,* p. 5.

Cauchy Sequence 1.10

Normed Linear Space 1.1

murraycross.com/functional1.html

murraycross.com/functional1.html

Complete Metric Space 1.11

Metric Space 1.9

murraycross.com/functional1.html

Banach space 1.12: Let X be a normed linear space. If X is complete in the metric d defined from the norm by d(x,y) = ||x - y||, we call X a Banach space. MacCluer, p. 5.

Proposition 1.14: If $\langle \cdot, \cdot \rangle$ is an inner product on a vector space *X*, then for all *x* and *y* in *X* we have $|x, y|^2 \leq \langle x, x \rangle \langle y, y \rangle$.

MacCluer, p. 7.

Inner Product 1.13: Let *X* be a vector space over C. An *inner product* is a map $\langle \cdot, \cdot \rangle$: $X \times X \to \mathbb{C}$ satisfying, for *x*, *y*, and *z* in *X* and scalars $\alpha \in \mathbb{C}$,

- (1) $\langle x, y \rangle = \langle \overline{y, x} \rangle$ for all *x*, *y* in *X*, (hermitean, $\overline{x, y}$ denotes complex conjugation.)
- (2) $\langle x, x \rangle \ge 0$, with $\langle x, x \rangle = 0$ (if and) only if x = 0, *(positive-definiteness)*
- (3) $\langle x + y, z \rangle = \langle x, z \rangle + \langle y, z \rangle$, and
- (4) $\langle \alpha x, y \rangle = \alpha \langle x, y \rangle$. (3 & 4 together = sequilinearity) *MacCluer*, p. 6.

Proposition 1.15: If $\langle \cdot, \cdot \rangle$ is an inner product on a vector space *X*, then

$$\|x\| \equiv \langle x, x \rangle^{\frac{1}{2}}$$

MacCluer, p. 7.

Proposition 1.14

murraycross.com/functional1.html

Banach space 1.12

murraycross.com/functional1.html

Proposition 1.15

murraycross.com/functional1.html

Inner Product 1.13

Hilbert space 1.16: A (complex) *Hilbert space* \mathcal{H} is a vector space over \mathbb{C} with an inner product such that \mathcal{H} is complete in the metric

 $d(x, y) = ||x - y|| = \langle x - y, x - y \rangle^{\frac{1}{2}}$. MacCluer, p. 8. *Corollary 1.19:* Fix $w \in D$. For every $f \in L^2_a(D)$ we have

$$|f(w)| \le \frac{1}{1-|w|} ||f||_{L^2_a(D)}$$

MacCluer, p. 9.

Proposition 1.18: If f is a analytic function in some closed disk *B*(*a*,*R*), then

$$f(a) = \frac{1}{\pi R^2} \int_{B(a,R)} f \, dA.$$
MacCluer, p. 9.

Theorem 1.20: The Bergman space $L^2_a(D)$ is a Hilbert space.

MacCluer, p. 10.

Corollary 1.19

murraycross.com/functional1.html

Hilbert space 1.16

murraycross.com/functional1.html

Theorem 1.20

Proposition 1.18

murraycross.com/functional1.html

Orthogonality 1.21: Given vectors f,g in a Hilbert space \mathcal{H} , we say that f is *orthogonal* to g, written $f \perp g$, if $\langle f, g \rangle = 0$. For sets A and B in \mathcal{H} we write $A \perp B$ if $\langle f, g \rangle = 0$ for all $f \in A$ and $g \in B$. Finally, A^{\perp} is the set of all vectors $f \in \mathcal{H}$ such that $f \perp g$ for all g in A; for any set A this is always a subspace of \mathcal{H} , moreover since $A^{\perp} = \bigcap_{a \in A} \{a\}^{\perp}, A^{\perp}$ is a closed subspace by continuity of the inner product (see Exercise 1.8).

MacCluer, p. 11.

Proposition 1.23: Every nonempty, closed convex set Kin a Hilbert space \mathcal{H} contains a unique element of smallest norm. Moreover, given any $h \in \mathcal{H}$, there is a unique k_0 in K such that $\|h - k_0\| = dist(h, K) \equiv inf\{\|h - k\|: k \in K\}.$ MacCluer, p. 12.

Proposition 1.22: If f_1, f_2, \dots, f_n , are pairwise orthogonal vectors in a Hilbert space, then $\|f_1 + f_2 + \dots + f_n\|^2 = \|f_1\|^2 + \|f_2\|^2 + \dots + \|f_n\|^2$. *MacCluer*, p. 11. *Theorem 1.24:* Let *M* be a closed subspace of a Hilbert space \mathcal{H} . There is a unique pair of mappings $P: \mathcal{H} \to M$ and $Q: \mathcal{H} \to M^{\perp}$ such that x = Px + Qx for all $x \in \mathcal{H}$. Furthermore, *P* and *Q* have the following additional properties: (a) $x \in M \Rightarrow Px = x$ and Qx = 0. (b) $x \in M^{\perp} \Rightarrow Px = 0$ and Qx = x. (c) *Px* is the closest vector in *M* to *x*. (d) *Qx* is the closest vector in *M*^{\perp} to *x*. (e) $||Px||^2 + ||Qx||^2 = ||x||^2$ for all *x*. (f) *P* and *Q* are linear maps.

MacCluer, p. 12.

Orthogonality 1.21

Proposition 1.23

murraycross.com/functional1.html

murraycross.com/functional1.html

Theorem 1.24

Proposition 1.22

murraycross.com/functional1.html

Corollary 1.25: If *M* is a closed, proper, subspace of \mathcal{H} , then there exists a nonzero vector *y* in \mathcal{H} with $y \perp M$. *MacCluer*, p. 15.

Bounded Linear Functional 1.27: A bounded linear functional on a normed linear space X is a linear functional $\Lambda : X \to \mathbb{C}$ for which there exists a finite constant C satisfying $|\Lambda(x)| \leq C ||x||$ for all $x \in X$. MacCluer, p. 16.

Linear Functional 1.26: If *X* is a normed linear space over \mathbb{C} , a *linear functional* on *X* is a map $\Lambda : X \to \mathbb{C}$ satisfying $\Lambda(\alpha x + \beta y) = \alpha \Lambda(x) + \beta \Lambda(y)$ for all vectors *x* and *y* in *X* and all scalars α and β .

MacCluer, p. 15.

Proposition 1.28: If *X* is a normed linear space, and $\Lambda : X \rightarrow C$ is a linear functional, then the following are equivalent:

(a) Λ is continuous.

(b) Λ is continuous at 0.

(c) Λ is bounded.

MacCluer, p. 16.

Bounded Linear Functional 1.27

Corollary 1.25

murraycross.com/functional1.html

murraycross.com/functional1.html

Proposition 1.28

murraycross.com/functional1.html

Linear Functional 1.26

Theorem 1.29: Every bounded linear functional Λ on a Hilbert space \mathcal{H} is given by inner product with a (unique) fixed vector h_0 in $\mathcal{H}: \Lambda(h) = h, h_0$. Moreover, the norm of the linear functional Λ is $||h_0||$.

MacCluer, p. 17.

Orthonormal Set 1.31: An *orthonormal set* in a Hilbert space \mathcal{H} is a set \mathcal{E} with the properties:

(1) for every $e \in \mathcal{E}$, $||e||_{.} = 1$, and

(2) for distinct vectors e and f in \mathcal{E} , $\langle e, f \rangle = 0$. *MacCluer*, p. 19.

Lemma 1.30: Let $P: \mathcal{H} \to M$ be the orthogonal projection of a Hilbert space \mathcal{H} onto a closed subspace M of \mathcal{H} . We have $\langle f, Pg \rangle = \langle Pf, g \rangle$ for all vectors f and g in \mathcal{H} .

MacCluer, p. 18.

Orthonormal Basis 1.32: An orthonormal basis for a Hilbert space \mathcal{H} is a maximal orthonormal set; that is, an orthonormal set that is not properly contained in any orthonormal set.

MacCluer, p. 19.

Orthonormal Set 1.31 (in a Hilbert space)

murraycross.com/functional1.html

Theorem 1.29

murraycross.com/functional1.html

Orthonormal Basis 1.32 (in a Hilbert space)

murraycross.com/functional1.html

Lemma 1.30

Theorem 1.33: If $\{e_n\}_1^\infty$ is an orthonormal sequence in a Hilbert space \mathcal{H} , then the following conditions are equivalent:

- (a) $\{e_n\}_1^{\infty}$ is an orthonormal basis.
- (b) If $h \in \mathcal{H}$ and $h \perp e_n$ for all *n*, then h = 0.
- (c) For every $h \in \mathcal{H}$, $h = \sum_{1}^{\infty} \langle h, e_n \rangle e_n$; equality here means the convergence in the norm of \mathcal{H} of the partial sums to *h*.
- (d) For every $h \in \mathcal{H}$, there exist complex numbers a_n so that $h = \sum_{1}^{\infty} a_n e_n$.
- (e) For every $h \in H$, $\sum_{1}^{\infty} |\langle h, e_n \rangle|^2 = ||h||^2$.
- (f) For all h and g in H, $\sum_{1}^{\infty} \langle h, e_n \rangle \langle e_n, g \rangle = \langle h, g \rangle$.

MacCluer, p. 20.

Theorem 1.33