Module: Let R be a ring (not necessarily commutative or with 1). A left R-module or a left module over R is a set M together with

- 1) a binary operation + on M under which M is an abelian group, and
- 2) an action of R on M (that is, a map $R \ge M \to M$) denoted by rm, for all $r \in R$ and for all $m \in M$ which satisfies
 - (a) (r + s)m = rm + sm, for all r, $s \in R$, $m \in M$,
 - (b) (rs)m = r(sm), for all $r, s \in R, m \in M$, and
 - (c) r(m + n) = rm + rn, for all $r \in R$, m, $n \in M$.

If the ring R has a 1 we impose the additional axiom:

(d) 1m = m, for all $m \in M$. *D* & *F*, p. 337.

Modules over a field F and vector spaces over F are the same.

D & F, p. 337.

Submodule: Let R be a ring and let M be an R-module. An R-submodule of M is a subgroup N of M which is closed under the action of ring elements, i.e., $rn \in N$, for all $r \in R$, $n \in N$.

D & F, p. 337.

Proposition 1: Let R be a ring and let M be an R-module. A subset N of M is a submodule of M if and only if (1) N≠ Ø, and (2) $x + ry \in N$ for all $r \in R$ and for all $x, y \in N$. D&F, p. 342.

module

murraycross.com/algebra2.html

module and vector space equivalence*

murraycross.com/algebra2.html

submodule

murraycross.com/algebra2.html

proposition 1

murraycross.com/algebra2.html