
 
 
 
R-algebra:  Let R be a commutative ring with identity. An 
R-algebra is a ring A with identity together with a ring 
homomorphism f : R → A mapping 1𝑅 to 1𝐴 such that the 
subring f (R) of A is contained in the center of A. 
                                                                                                      D & F,  p. 342. 

 

 

 

 

 

 

 

 

 

 

 

 

 

If A and B are two R-algebras, an R-algebra homo- 
morphism (or isomorphism) is a ring homomorphism 
(isomorphism, respectively) 𝜑: A → B mapping 1𝐴 
to 1𝐵 such that 𝜑(r · a) = r · 𝜑(a) for all r ∈ R and a ∈ A. 
                                                                                                   D & F,  p. 343. 

 

 

 

 

 

Definitions. Let R be a ring and let M and N be R-
modules. 
(1) A map (𝜑: M→N is an R-module homomorphism if it  
respects the R-module structures of M and N, i.e., 
  (a) 𝜑(x + y) = 𝜑(x) + 𝜑(y), for all x, y ∈ M and 
  (b) 𝜑(rx) = r𝜑(x), for all r ∈ R, x ∈ M. 
 
(2) An R-module homomorphism is an isomorphism (of 
R-modules) if it is both injective and surjective.  The 
modules M and N are said to be isomorphic, 
denoted M ≅ N, if there is some R-module isomorphism 
𝜑: M→N.   
                                                                                    D & F,  p. 345. 
 
 
 
 
 
 
R-module homomorphism and isomorphism definitions 
continued 
(3) If 𝜑: M→N is an R -module homomorphism, let  
ker 𝜑 = {m ∈ M | 𝜑(m) =0} (the kernel of 𝜑) and let 
𝜑(M) = {n ∈ N | n = 𝜑(m) for some m ∈ M} (the 
image of 𝜑, as usual). 
 
(4) Let M and N be R-modules and define HomR (M, N) to 
be the set of all R-module homomorphisms from M into 
N .   
                                                                                       D & F,  p. 345. 
 
 
 



 
 
 
 

R-module homomorphism (isomorphism) 
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R-module homomorphism (isomorphism) 
continued 
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R-algebra 
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R-algebra homomorphism (isomorphism) 
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Proposition 2:  Let M, N and L be R-modules. 
 
(1)  A map 𝜑: M → N is an R-module homomorphism if   
        and only if 𝜑(rx + y) = r𝜑(x) + 𝜑(y) for all x, y ∈ M  
        and all r ∈ R. 
 
(2) Let 𝜑, 𝜓 be elements of HomR (M, N). Define 𝜑 + 𝜓 by  
       (𝜑 + 𝜓)(m) = 𝜑(m) + 𝜓(m) for all m ∈ M. 
       Then 𝜑 + 𝜓 ∈ HomR(M, N) and with this operation  
        HomR(M, N) is an abelian group. If R is a     
        commutative ring then for r ∈ R define r𝜑 by  
        (r𝜑) (m) = r (𝜑(m)) for all m ∈ M.   
                                                                         D & F,  p. 346. 

 
 
 
 
 
 
Proposition 2 cont.:   
(2) cont. Then r𝜑 ∈ HomR(M, N)  and with this action of  
        the commutative ring R the abelian group  
        HomR(M, N) is an R-module. 
 
(3) If 𝜑 ∈ HomR(L, M) and 𝜓 ∈ HomR(M, N) then  
       𝜓 o 𝜑 ∈ HomR(L, N). 
 
(4)  With addition as above and multiplication defined as     
        function composition, HomR(M, M) is a ring with 1 .   
        When R is commutative HomR(M, M) is an R-algebra. 
                                                                                    D & F,  p. 347. 

 
 

 
 
Endomorphism Ring:  The ring HomR(M, M) is called the 
endomorphism ring of M and will often be denoted by 
EndR(M) , or just End(M) when the ring R is clear from 
the context.  Elements of End(M) are called 
endomorphisms.  
                                                                                       D & F,  p. 347. 
 
 
 
 
 
 
 
 
 
 
 
 
Proposition 3:  Let R be a ring, let M be an R-module and 
let N be a submodule of M .  The (additive, abelian) 
quotient group M/N can be made into an R -module by 
defining an action of elements of R by 
r(x + N) = (rx) + N, for all r ∈ R, x + N ∈ M/N. 
The natural projection map 𝜋: M → M/N defined by 
 𝜋(x) = x + N is an R-module homomorphism with 
kernel N.   
                                                                                  D & F,  p. 348. 

 
 
 
 



 
 
 

endomorphism ring 
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proposition 3 
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proposition 2 
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proposition 2 cont.  
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Sum of 2 submodules:  Let A , B be submodules of the R-
module M.  The sum of A and B is the set 
A + B = {a + b | a ∈ A , b ∈ B } .  D & F,  p. 349. 
 
 
 
 
 
 
 
 
 
 
 
 
Module Isomorphism Theorems 
 
(1) (First Isomorphism Theorem for Modules) Let M, N 
be R-modules and let 𝜑: M → N be an R-module 
homomorphism. Then ker 𝜑 is a submodule of M, and 
M/ker 𝜑 ≅ 𝜑(M). 
 
(2) (Second Isomorphism Theorem) Let A , B be 
submodules of the R-module M.  
Then (A + B)/B ≅ A/(A ⋂ B ) . 
 
(3) (Third Isomorphism Theorem) Let M be an R-
module, and let A and B be submodules of M with A ⊆ B. 
Then (M/A)/(B/A) ≅ M/B.  D & F,  p. 349.   

Module Isomorphism Theorems cont. 
 
(4) (Fourth or Lattice Isomorphism Theorem) Let N be a 
submodule of the R-module M. There is a bijection 
between the submodules of M which contain N and the 
submodules of M/N. The correspondence is given by  
A ↔ A/N, for all A ⊇ N. This correspondence commutes 
with the processes of taking sums and intersections (i.e., 
is a lattice isomorphism between the lattice of 
submodules of M/N and the lattice of submodules of M 
which contain N).  D & F,  p. 349. 
 
 
 
 
 
 
 
Definition. Let M be an R-module and let 𝑁1, 𝑁2, . . . . , 𝑁𝑛 
be submodules of M.  (D & F,  p. 351) 
 
(1) The sum of 𝑁1, 𝑁2, . . . . , 𝑁𝑛 is the set of all finite sums 
of elements from the sets 𝑁𝑛:  {𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛 | 𝑎𝑖 ∈
𝑁𝑖; for all i}. Denote this sum by 𝑁1 + 𝑁2 + . . . . , 𝑁𝑛. 
 
(2) For any subset A of M let RA = {𝑟1𝑎1 + 𝑟2𝑎2 + ⋯+ 
𝑟𝑚𝑎𝑚 | 𝑟1, … , 𝑟𝑚 ∈ R, 𝑎1, … , 𝑎𝑚 ∈ 𝐴, m ∈ ℤ+} 
(where by convention RA = {O} if A = ∅). lf A is the finite 
set {𝑎1, … , 𝑎𝑚} we shall write 𝑟1𝑎1 + 𝑟2𝑎2 + ⋯+ 𝑟𝑛𝑎𝑛 for 
RA. Call RA the submodule of M generated by A.  
 
 



 
 
 
 

module isomorphism theorems 
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module isomorphism theorems 
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If N is a submodule of M (possibly N = M) and N = RA, 
for some subset A of M, we call A a set of generators or 
generating set for N, and we say N is generated by A. 
 

(3) A submodule N of M (possibly N = M) is finitely 
generated if there is some finite subset A of M such that 
N = RA, that is, if N is generated by some finite subset. 
 

(4) A submodule N of M (possibly N = M) is cyclic if 
there exists an element a ∈ M such that N = Ra, that is, if 
N is generated by one element:  N = Ra = {ra | r ∈ R}.   
                                                                                                  D & F,  p. 351. 

 
 
 
 
 
 
 
 
 
 
 
 
direct product of modules:  Let 𝑀1, … , 𝑀𝑘 be a collection 
of R-modules. The collection of k-tuples (𝑚1, … , 𝑚𝑘) 
where 𝑚𝑖 ∈ 𝑀𝑖 with addition and action of R defined 
componentwise is called the direct product of 𝑀1, … , 𝑀𝑘, 
denoted 𝑀1 ×  … × 𝑀𝑘.   
                                                                                 D & F,  p. 353. 

 
 
 

proposition 5:  Let 𝑁1, … , 𝑁𝑘 be submodules of the R-
module M. Then the following are equivalent: 
 
(1) The map 𝜋: 𝑁1 × · · · × 𝑁𝑘 → 𝑁1 + · · · + 𝑁𝑘 defined by 
        𝜋(𝑎1, … , 𝑎𝑘) = 𝑎1 + · · · + 𝑎𝑘  is an isomorphism (of  
        R-modules): 𝑁1 + · · · + 𝑁𝑘 ≅ 𝑁1 × · · · × 𝑁𝑘.  
 

(2) 𝑁𝑗  ⋂ (𝑁1  + · · ·  + 𝑁𝑗−1  + 𝑁𝑗+1  + ⋯ + 𝑁𝑘) = 0 for all   

        j ∈ {1 , 2, . . . , k} . 
 
(3) Every x ∈ 𝑁1 + · · · + 𝑁𝑘 can be written uniquely in  
        the form 𝑎1 + · · · + 𝑎𝑘  with 𝑎𝑖 ∈ 𝑁𝑖 .   
                                                                                 D & F,  p. 353. 

 
 
 
 
 
 
 
 
 
Definition. An R-module F is said to be free on the subset 
A of F if for every nonzero element x of F, there exist 
unique nonzero elements 𝑟1, … , 𝑟𝑛 of R and unique 
𝑎1, … , 𝑎𝑛 in A such that x = 𝑟1𝑎1 + 𝑟2𝑎2 + ⋯+ 𝑟𝑛𝑎𝑛, for 
some n ∈ ℤ+. In this situation we say A is a basis or set of 
free generators for F. If R is a commutative ring the 
cardinality of A is called the rank of F (cf. Exercise 27). 
                                                                                                    D & F,  p. 354. 

 
 
 



 
 
 

proposition 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R-module free on one of its subsets 
 
 
 
 

 
 
 

submodule definitions cont. 
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Theorem 6:  For any set A there is a free R-module F(A) 
on the set A and F(A) satisfies the following universal 
property: if M is any R-module and 𝜑: A → M is any map 
of sets, then there is a unique R-module homomorphism 
Φ: F(A) → M such that Φ(a) = 𝜑(a), for all a ∈ A , that is, 
the following diagram commutes. 
                                                                                 D & F,  p. 354. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
free R-module theorem 6* cont.:   
 
A → inclusion → F(A) 
         ↘                        ↓ 
               𝜑                 Φ 
                     ↘            ↓ 
                           ↘      ↓ 
                                   M 
When A is the finite set {𝑎1, … , 𝑎𝑛}, F(A) = R𝑎1 ⊕ R𝑎2 ⊕ 
· · · ⊕ R𝑎𝑛 ≅ 𝑅𝑛 .  (Compare: Section 6.3, free groups.) 
                                                                                  D & F,  p. 354. 
 

corollary 7: 
 
(1) If F1 and F2 are free modules on the same set A, there 
is a unique isomorphism between F1 and F2 which is the 
identity map on A. 
 
(2) If F is any free R-module with basis A, then F ≅ F(A) . 
In particular, F enjoys the same universal property with 
respect to A as F (A) does in free R-module theorem. 
                                                                                  D & F,  p. 355. 

 
 
 
 
 
 
 
 
 
 
 
Theorem 8:  Let R be a subring of S, let N be a left R-
module and let 𝜄: N → S ⨂𝑅N be the R-module 
homomorphism defined by 𝜄(n) = 1⨂n . Suppose that L 
is any left S-module (hence also an R-module) and that 
𝜑: N → L is an R-module homomorphism from N to L. 
Then there is a unique S-module homomorphism  
Φ: S ⨂𝑅N → L such that 𝜑 factors through Φ, i.e.,  
𝜑 = Φ o 𝜄 and the diagram 
                                                                                    D & F,  p. 362. 

 
 
 



 
 
 
 

corollary 7 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

theorem 8 
 
 
 
 

 
 
 
 

theorem 6 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

theorem 6 cont. 
 
 

 
 



unique module homomorphism theorem 8* cont:   
 
          N →  𝜄 →   S ⨂𝑅N  
               ↘              ↓ 
                   𝜑         Φ 
                        ↘     ↓ 
                                L 
commutes. Conversely, if Φ: S ⨂𝑅N → L is an S-module 
homomorphism then 𝜑 = Φ o 𝜄 is an R-module 
homomorphism from N to L.                           D & F,  p. 362. 
 
 
 
 
 
 
 
 
 
 
 
 
Corollary 9. let 𝜄: N → S ⨂𝑅N be the R-module 
homomorphism defined the unique module 
homomorphism theorem*.  Then N / ker 𝜄 is the unique 
largest quotient of N that can be embedded in any S-
module.  In particular, N can be embedded as an R -
submodule of some left S -module if and only if 𝜄 is 
injective (in which case N is isomorphic to the R -
submodule 𝜄(N) of the S-module S ⨂𝑅N).   
                                                                      D & F,  p. 362. 

 
 

R-balanced:  Let M be a right R -module, let N be a left R -
module and let L be an abelian group (written 
additively). A map 𝜑: M × N → L is called R-balanced or 
middle linear with respect to R if 
𝜑(m1 + m2, n) = 𝜑(m1, n) + 𝜑(m2, n) 
𝜑 (m, n1 + n2) = 𝜑 (m, n1) + 𝜑 (m, n2) 
𝜑 (m, rn) = 𝜑 (mr, n) 
for all m, m1 , m2 ∈ M, n, n1, n2 ∈ N, and r ∈ R. 
                                                                                  D & F,  p. 365. 

 
 
 
 
 
 
 
 
 
 
Theorem 10. Suppose R is a ring with 1 , M is a right R-
module, and N is a left R-module. Let M ⨂𝑅N be the 
tensor product of M and N over R and let 𝜄: M × N → 
M ⨂𝑅N be the R-balanced map defined above. 
(1) If Φ: M ⨂𝑅N → L is any group homomorphism from 
M ⨂𝑅N to an abelian group L then the composite map  
𝜑 = Φ o 𝜄 is an R-balanced map from M × N to L. 
(2) Conversely, suppose L is an abelian group and 
𝜑: M × N → L is any R-balanced map. Then there is a 
unique group homomorphism Φ: M ⨂𝑅N → L  
such that 𝜑 factors through 𝜄, i.e., 𝜑 = Φ o 𝜄 as in (1). 
                                                                                  D & F,  p. 365 
 
 



 
 
 

R-balanced 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

theorem 10 
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corollary 9 
 
 
 



 
Equivalently, the correspondence 𝜑 ↔ Φ in the 
commutative diagram 
          M x N→ 𝜄 → M ⨂𝑅N  
                     ↘                 ↓ 
                         𝜑            Φ 
                              ↘        ↓ 
                                   ↘   ↓ 
                                         L 
establishes a bijection  

    {
R − balanced maps 

𝜑: M × N →  L 
} ↔ {

group homomorphisms
Φ: M ⨂𝑅N →  L

}. 

                                                                           D & F,  p. 365. 

 
 
 
 
 
 
 
Corollary 11. Suppose D is an abelian group and  
𝜄': M x N → D is an R-balanced map such that 
  (i) the image of 𝜄' generates D as an abelian group, and    
 (ii) every R-balanced map defined on M × N factors  
        through 𝜄' as in Theorem 10. 
Then there is an isomorphism f: M ⨂𝑅N ≅ D of abelian 
groups with 𝜄' = f o 𝜄.   
                                                                               D & F,  p. 366. 

 
 
 
 
 

 
 
 
 
(S, R)-bimodule: Let R and S be any rings with 1. An 
abelian group M is called an (S, R)-bimodule if M is a left 
S-module, a right R-module, and s(mr) = (sm)r for all  
s ∈ S, r ∈ R and m ∈ M.   
                                                                                   D & F,  p. 366. 
 
 
 
 
 
 
 
 
 
 
 
standard R-module structure on M :  Suppose M is a left 
(or right) R-module over the commutative ring R.  Then 
the (R, R)-bimodule structure on M defined by letting the 
left and right R-actions coincide, i.e., mr = rm for all  
m ∈ M and r ∈ R, will be called the standard R -module 
structure on M.   
                                                                                    D & F,  p. 367. 

 
 
 
 
 
 



 
 
 
 

(S, R)-bimodule 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

standard R-module structure on M 
 
 
 
 

 
 
 
 

theorem 10 cont. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

corollary 11 
 
 
 
 



 
R-bilinear:  Let R be a commutative ring with 1 and let M, 
N, and L be left R -modules. 
The map 𝜑: M × N → L is called R-bilinear  if it is  
R -linear in each factor, i.e., if 
    𝜑(𝑟1𝑚1 + 𝑟2𝑚2, n) = 𝑟1𝜑(𝑚1, n) + 𝑟2𝜑(𝑚2, n), and 
    𝜑(m, 𝑟1𝑛1 + 𝑟2𝑛2) = 𝑟1𝜑(m, 𝑛1) + 𝑟2𝜑(m, 𝑛2) 
for all m, 𝑚1, 𝑚2 ∈ M, n, 𝑛1, 𝑛2 ∈ N and 𝑟1, 𝑟2 ∈ R. 
                                                                          D & F,  p. 368. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Corollary 12.   Suppose R is a commutative ring. Let M 
and N be two left R-modules and let M ⨂𝑅N be the tensor 
product of M and N over R, where M is given the 
standard R-module structure. Then M ⨂𝑅N is a left R-
module with 
    r(m ⨂ n) = (rm) ⨂ n = (mr) ⨂ n = m ⨂ (rn), 
                                                                                               D & F,  p. 368. 

and the map 𝜄: M × N → M ⨂𝑅N with t(m, n) = m ⨂ n is 
an R-bilinear map. If L is any left R-module then there is 
a bijection  

   {
R − bilinear maps 

𝜑: M ×  N →  L
} ↔ {

R − module homomorphisms 
Φ: M ⨂𝑅N →  L

} 

where the correspondence between 𝜑 and Φ is given by 
the commutative diagram  
    M ×  N → 𝜄 → M ⨂𝑅N  
                   ↘                 ↓ 
                        𝜑           Φ 
                            ↘        ↓ 
                                      L                                                   D & F,  p. 368. 
 
 
 
 
 
 
 
tensor product theorem 13:  Let M, M' be right 
R-modules, let N, N' be left R-modules, and suppose  
𝜑: M → M' and 𝜓: N → N' are R-module homomorphisms. 
  (1) There is a unique group homomorphism, denoted  
          by 𝜑 ⨂ 𝜓, mapping M ⨂𝑅N,into M' ⨂𝑅 N' such that   
          (𝜑 ⨂ 𝜓)(m ⨂ n) = 𝜑(m) ⨂ 𝜓(n) for all m ∈ M and 
           n ∈ N. 
  (2)  If M, M' are also (S, R)-bimodules for some ring S  
          and 𝜑 is also an S-module homomorphism, then  
          𝜑 ⨂ 𝜓 is a homomorphism of left S-modules. In  
          particular, if R is commutative then 𝜑 ⨂ 𝜓 f is   
          always an R -module homomorphism for the 
          standard R-module structures.                 D & F,  p. 370. 



 
 
 

 
corollary 12 cont. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tensor product theorem 13 
 
 
 
 

 
 
 
 
 

R-bilinear 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

corollary 12 
 
 
 
 



 
 
(3) If 𝜆: M' → M" and 𝜇: N' → N" are R-module 
homomorphisms then 
(𝜆 ⨂ 𝜇) o (𝜑 ⨂ 𝜓) = (𝜆 o 𝜑) ⨂ (𝜇 o 𝜓). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
associativity of the tensor product theorem 14*:   
Suppose M is a right R-module, N is an (R, T)-bimodule, 
and L is a left T-module. Then there is a unique 
isomorphism 
(M ®R N) ®T L ;:;:: M ®R (N ®T L) 
of abelian groups such that (m ® n) ® l 􀀭 m ® (n ® l). If 
M is an (S, R)-bimodule. 
then this is an isomorphism of S-modules. 


