R-algebra: Let R be a commutative ring with identity. An R -algebra is a ring A with identity together with a ring homomorphism f: $\mathrm{R} \rightarrow$ A mapping 1_{R} to 1_{A} such that the subring $f(R)$ of A is contained in the center of A.
$D \& F$, p. 342.

If A and B are two R -algebras, an R-algebra homomorphism (or isomorphism) is a ring homomorphism (isomorphism, respectively) $\varphi: \mathrm{A} \rightarrow \mathrm{B}$ mapping 1_{A} to 1_{B} such that $\varphi(\mathrm{r} \cdot \mathrm{a})=\mathrm{r} \cdot \varphi(\mathrm{a})$ for all $\mathrm{r} \in \mathrm{R}$ and $\mathrm{a} \in \mathrm{A}$. $D \& F$, p. 343.

Definitions. Let R be a ring and let M and N be R modules.
(1) A map ($\varphi: \mathrm{M} \rightarrow \mathrm{N}$ is an R -module homomorphism if it respects the R -module structures of M and N , i.e.,
(a) $\varphi(\mathrm{x}+\mathrm{y})=\varphi(\mathrm{x})+\varphi(\mathrm{y})$, for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and
(b) $\varphi(\mathrm{rx})=\mathrm{r} \varphi(\mathrm{x})$, for all $\mathrm{r} \in \mathrm{R}, \mathrm{x} \in \mathrm{M}$.
(2) An R-module homomorphism is an isomorphism (of R-modules) if it is both injective and surjective. The modules M and N are said to be isomorphic, denoted $\mathrm{M} \cong \mathrm{N}$, if there is some R -module isomorphism $\varphi: M \rightarrow N$.
$D \& F$, p. 345.
R-module homomorphism and isomorphism definitions continued
(3) If $\varphi: \mathrm{M} \rightarrow \mathrm{N}$ is an R -module homomorphism, let $\operatorname{ker} \varphi=\{\mathrm{m} \in \mathrm{M} \mid \varphi(\mathrm{m})=0\}$ (the kernel of φ) and let $\varphi(\mathrm{M})=\{\mathrm{n} \in \mathrm{N} \mid \mathrm{n}=\varphi(\mathrm{m})$ for some $\mathrm{m} \in \mathrm{M}\}$ (the image of φ, as usual).
(4) Let M and N be R-modules and define $\operatorname{Hom}_{R}(M, N)$ to be the set of all R-module homomorphisms from M into N .

R-module homomorphism (isomorphism)

murraycross.com/algebra2.html

R-module homomorphism (isomorphism) continued murraycross.com/algebra2.html

R-algebra
murraycross.com/algebra2.html
(1) A map $\varphi: \mathrm{M} \rightarrow \mathrm{N}$ is an R -module homomorphism if and only if $\varphi(\mathrm{rx}+\mathrm{y})=\mathrm{r} \varphi(\mathrm{x})+\varphi(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{M}$ and all $r \in R$.
(2) Let φ, ψ be elements of $\operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N})$. Define $\varphi+\psi$ by $(\varphi+\psi)(\mathrm{m})=\varphi(\mathrm{m})+\psi(\mathrm{m})$ for all $\mathrm{m} \in \mathrm{M}$.
Then $\varphi+\psi \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N})$ and with this operation $\operatorname{Hom}_{R}(M, N)$ is an abelian group. If R is a commutative ring then for $r \in R$ define $r \varphi$ by $(\mathrm{r} \varphi)(\mathrm{m})=\mathrm{r}(\varphi(\mathrm{m})$) for all $\mathrm{m} \in \mathrm{M}$.

D \& F p. 346.

Proposition 2 cont.:
(2) cont. Then $\mathrm{r} \varphi \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N})$ and with this action of the commutative ring R the abelian group $\operatorname{Hom}_{R}(M, N)$ is an R-module.
(3) If $\varphi \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{L}, \mathrm{M})$ and $\psi \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N})$ then ψ o $\varphi \in \operatorname{Hom}_{\mathrm{R}}(\mathrm{L}, \mathrm{N})$.
(4) With addition as above and multiplication defined as function composition, $\operatorname{Hom}_{R}(M, M)$ is a ring with 1 . When R is commutative $\operatorname{Hom}_{R}(M, M)$ is an R-algebra. $D \& F, \mathrm{p} .347$.

Endomorphism Ring: The ring $\operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{M})$ is called the endomorphism ring of M and will often be denoted by $\operatorname{EndR}(M)$, or just End(M) when the ring R is clear from the context. Elements of End(M) are called endomorphisms.

Proposition 3: Let R be a ring, let M be an R -module and let N be a submodule of M . The (additive, abelian) quotient group M / N can be made into an R -module by defining an action of elements of R by $r(x+N)=(r x)+N$, for all $r \in R, x+N \in M / N$. The natural projection map $\pi: M \rightarrow M / N$ defined by $\pi(\mathrm{x})=\mathrm{x}+\mathrm{N}$ is an R -module homomorphism with kernel N .

D\&F, p. 348.
endomorphism ring
murraycross.com/algebra2.html
proposition 3
murraycross.com/algebra2.html
proposition 2
murraycross.com/algebra2.html
proposition 2 cont.
murraycross.com/algebra2.html

Sum of 2 submodules: Let A , B be submodules of the Rmodule M. The sum of A and B is the set $\mathrm{A}+\mathrm{B}=\{\mathrm{a}+\mathrm{b} \mid \mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}\} . D \& F, \mathrm{p} .349$.

Module Isomorphism Theorems

(1) (First Isomorphism Theorem for Modules) Let M, N be R-modules and let $\varphi: \mathrm{M} \rightarrow \mathrm{N}$ be an R-module homomorphism. Then $\operatorname{ker} \varphi$ is a submodule of M , and $\mathrm{M} / \operatorname{ker} \varphi \cong \varphi(\mathrm{M})$.
(2) (Second Isomorphism Theorem) Let A , B be submodules of the R-module M.
Then $(A+B) / B \cong A /(A \cap B)$.
(3) (Third Isomorphism Theorem) Let M be an Rmodule, and let A and B be submodules of M with $\mathrm{A} \subseteq \mathrm{B}$. Then $(\mathrm{M} / \mathrm{A}) /(\mathrm{B} / \mathrm{A}) \cong \mathrm{M} / \mathrm{B} . \quad D \& F, \mathrm{p} .349$.

Module Isomorphism Theorems cont.

(4) (Fourth or Lattice Isomorphism Theorem) Let N be a submodule of the R-module M. There is a bijection between the submodules of M which contain N and the submodules of M / N. The correspondence is given by $A \leftrightarrow A / N$, for all $A \supseteq N$. This correspondence commutes with the processes of taking sums and intersections (i.e., is a lattice isomorphism between the lattice of submodules of M / N and the lattice of submodules of M which contain N). $D \& F$, p. 349.

Definition. Let M be an R-module and let $N_{1}, N_{2}, \ldots, N_{n}$ be submodules of M. ($D \& F, \mathrm{p} .351$)
(1) The sum of $N_{1}, N_{2}, \ldots, N_{n}$ is the set of all finite sums of elements from the sets $N_{n}:\left\{a_{1}+a_{2}+\cdots+a_{n} \mid a_{i} \in\right.$ N_{i}; for all i\}. Denote this sum by $N_{1}+N_{2}+\ldots, N_{n}$.
(2) For any subset A of M let RA $=\left\{r_{1} a_{1}+r_{2} a_{2}+\cdots+\right.$ $\left.r_{m} a_{m} \mid r_{1}, \ldots, r_{m} \in \mathrm{R}, a_{1}, \ldots, a_{m} \in A, \mathrm{~m} \in \mathbb{Z}^{+}\right\}$
(where by convention $R A=\{0\}$ if $\mathrm{A}=\varnothing$). If A is the finite set $\left\{a_{1}, \ldots, a_{m}\right\}$ we shall write $r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}$ for RA. Call RA the submodule of M generated by A.
module isomorphism theorems
murraycross.com/algebra2.html
sum of 2 submodules
murraycross.com/algebra2.html
submodule definitions
murraycross.com/algebra2.html
module isomorphism theorems murraycross.com/algebra2.html

If N is a submodule of M (possibly $\mathrm{N}=\mathrm{M}$) and $\mathrm{N}=$ RA, for some subset A of M, we call A a set of generators or generating set for N , and we say N is generated by A .
(3) A submodule N of M (possibly $\mathrm{N}=\mathrm{M}$) is finitely generated if there is some finite subset A of M such that $\mathrm{N}=\mathrm{RA}$, that is, if N is generated by some finite subset.
(4) A submodule N of M (possibly $\mathrm{N}=\mathrm{M}$) is cyclic if there exists an element $a \in M$ such that $N=R a$, that is, if N is generated by one element: $N=R a=\{r a \mid r \in R\}$. $D \& F, \mathrm{p} .351$.
direct product of modules: Let M_{1}, \ldots, M_{k} be a collection of R-modules. The collection of k -tuples (m_{1}, \ldots, m_{k}) where $m_{i} \in M_{i}$ with addition and action of R defined componentwise is called the direct product of M_{1}, \ldots, M_{k}, denoted $M_{1} \times \ldots \times M_{k}$.

D\&F, p. 353.
proposition 5: Let N_{1}, \ldots, N_{k} be submodules of the Rmodule M . Then the following are equivalent:
(1) The map $\pi: N_{1} \times \cdots \times N_{k} \rightarrow N_{1}+\cdots+N_{k}$ defined by $\pi\left(a_{1}, \ldots, a_{k}\right)=a_{1}+\cdots+a_{k}$ is an isomorphism (of R-modules): $N_{1}+\cdots+N_{k} \cong N_{1} \times \cdots \times N_{k}$.
(2) $N_{j} \cap\left(N_{1}+\cdots+N_{j-1}+N_{j+1}+\cdots+N_{k}\right)=0$ for all $\mathrm{j} \in\{1,2, \ldots, k\}$.
(3) Every $\mathrm{x} \in N_{1}+\cdots+N_{k}$ can be written uniquely in the form $a_{1}+\cdots+a_{k}$ with $a_{i} \in N_{i}$.

D\&F, p. 353.

Definition. An R-module F is said to be free on the subset A of F if for every nonzero element x of F, there exist unique nonzero elements r_{1}, \ldots, r_{n} of R and unique a_{1}, \ldots, a_{n} in A such that $\mathrm{x}=r_{1} a_{1}+r_{2} a_{2}+\cdots+r_{n} a_{n}$, for some $\mathrm{n} \in \mathbb{Z}^{+}$. In this situation we say A is a basis or set of free generators for F . If R is a commutative ring the cardinality of A is called the rank of F (cf. Exercise 27).
$D \& F, \mathrm{p} .354$.

Theorem 6: For any set A there is a free R-module $\mathrm{F}(\mathrm{A})$ on the set A and $F(A)$ satisfies the following universal property: if M is any R -module and $\varphi: \mathrm{A} \rightarrow \mathrm{M}$ is any map of sets, then there is a unique R -module homomorphism $\Phi: F(A) \rightarrow M$ such that $\Phi(a)=\varphi(a)$, for all $a \in A$, that is, the following diagram commutes.

$$
D \& F, \text { p. } 354
$$

free R-module theorem 6^{*} cont.:

When A is the finite set $\left\{a_{1}, \ldots, a_{n}\right\}, \mathrm{F}(\mathrm{A})=\mathrm{R} a_{1} \oplus \mathrm{R} a_{2} \oplus$ $\cdots \oplus R a_{n} \cong R^{n}$. (Compare: Section 6.3, free groups.) $D \& F$, p. 354.
corollary 7:
(1) If F_{1} and F_{2} are free modules on the same set A , there is a unique isomorphism between F_{1} and F_{2} which is the identity map on A .
(2) If F is any free R-module with basis A, then $F \cong F(A)$. In particular, F enjoys the same universal property with respect to A as $\mathrm{F}(\mathrm{A})$ does in free R -module theorem.
$D \& F$, p. 355.

Theorem 8: Let R be a subring of S , let N be a left Rmodule and let $t: \mathrm{N} \rightarrow \mathrm{S} \otimes_{R} \mathrm{~N}$ be the R-module homomorphism defined by $\iota(\mathrm{n})=1 \otimes \mathrm{n}$. Suppose that L is any left S-module (hence also an R-module) and that $\varphi: \mathrm{N} \rightarrow \mathrm{L}$ is an R -module homomorphism from N to L . Then there is a unique S-module homomorphism $\Phi: \mathrm{S} \otimes_{R} \mathrm{~N} \rightarrow \mathrm{~L}$ such that φ factors through Φ, i.e., $\varphi=\Phi \circ \iota$ and the diagram

D\&F, p. 362.
unique module homomorphism theorem 8^{*} cont:

commutes. Conversely, if $\Phi: S \otimes_{R} N \rightarrow L$ is an S-module homomorphism then $\varphi=\Phi \mathrm{o} \iota$ is an R-module homomorphism from N to L .
$D \& F$, p. 362.

Corollary 9. let $t: \mathrm{N} \rightarrow \mathrm{S} \otimes_{R} \mathrm{~N}$ be the R-module homomorphism defined the unique module homomorphism theorem*. Then $\mathrm{N} / \mathrm{ker} \iota$ is the unique largest quotient of N that can be embedded in any S module. In particular, N can be embedded as an R submodule of some left S-module if and only if l is injective (in which case N is isomorphic to the R submodule $\iota(\mathrm{N})$ of the S -module $\left.\mathrm{S} \otimes_{R} \mathrm{~N}\right)$.
$D \& F$, p. 362.
R-balanced: Let M be a right R -module, let N be a left R module and let L be an abelian group (written additively). A map $\varphi: \mathrm{M} \times \mathrm{N} \rightarrow \mathrm{L}$ is called R-balanced or middle linear with respect to R if
$\varphi\left(\mathrm{m}_{1}+\mathrm{m}_{2}, \mathrm{n}\right)=\varphi\left(\mathrm{m}_{1}, \mathrm{n}\right)+\varphi\left(\mathrm{m}_{2}, \mathrm{n}\right)$
$\varphi\left(\mathrm{m}, \mathrm{n}_{1}+\mathrm{n}_{2}\right)=\varphi\left(\mathrm{m}, \mathrm{n}_{1}\right)+\varphi\left(\mathrm{m}, \mathrm{n}_{2}\right)$
$\varphi(\mathrm{m}, \mathrm{rn})=\varphi(\mathrm{mr}, \mathrm{n})$
for all $m, m_{1}, m_{2} \in M, n, n_{1}, n_{2} \in N$, and $r \in R$.
$D \& F, \mathrm{p} .365$.

Theorem 10. Suppose R is a ring with $1, M$ is a right R module, and N is a left R -module. Let $\mathrm{M} \otimes_{R} \mathrm{~N}$ be the tensor product of M and N over R and let $t: \mathrm{M} \times \mathrm{N} \rightarrow$ $\mathrm{M} \otimes_{R} \mathrm{~N}$ be the R -balanced map defined above.
(1) If $\Phi: M \otimes_{R} N \rightarrow$ L is any group homomorphism from $\mathrm{M} \otimes_{R} \mathrm{~N}$ to an abelian group L then the composite map $\varphi=\Phi \mathrm{o} \iota$ is an R -balanced map from $\mathrm{M} \times \mathrm{N}$ to L .
(2) Conversely, suppose L is an abelian group and $\varphi: \mathrm{M} \times \mathrm{N} \rightarrow \mathrm{L}$ is any R -balanced map. Then there is a unique group homomorphism $\Phi: \mathrm{M} \otimes_{R} \mathrm{~N} \rightarrow \mathrm{~L}$ such that φ factors through ι, i.e., $\varphi=\Phi$ o ι as in (1).

R-balanced
theorem 8 cont.

Equivalently, the correspondence $\varphi \leftrightarrow \Phi$ in the commutative diagram

establishes a bijection

$$
\left\{\begin{array}{c}
\mathrm{R}-\mathrm{balanced} \text { maps } \\
\varphi: \mathrm{M} \times \mathrm{N} \rightarrow \mathrm{~L}
\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}
\text { group homomorphisms } \\
\Phi: \mathrm{M} \otimes_{R} \mathrm{~N} \rightarrow \mathrm{~L}
\end{array}\right\} .
$$

$$
D \& F, \text { p. } 365 .
$$

Corollary 11. Suppose D is an abelian group and $\iota^{\prime}: \mathrm{MxN} \rightarrow \mathrm{D}$ is an R -balanced map such that
(i) the image of ι^{\prime} generates D as an abelian group, and
(ii) every R-balanced map defined on $\mathrm{M} \times \mathrm{N}$ factors through ι^{\prime} as in Theorem 10.
Then there is an isomorphism f: $\mathrm{M} \otimes_{R} \mathrm{~N} \cong \mathrm{D}$ of abelian groups with $\iota^{\prime}=$ fo ι.

$$
D \& F, \text { p. } 366
$$

(S, R)-bimodule: Let R and S be any rings with 1 . An abelian group M is called an (S, R)-bimodule if M is a left S -module, a right R -module, and $\mathrm{s}(\mathrm{mr})=(\mathrm{sm}) \mathrm{r}$ for all $s \in S, r \in R$ and $m \in M$.
$D \& F$, p. 366.
standard R-module structure on M : Suppose M is a left (or right) R-module over the commutative ring R. Then the (R, R)-bimodule structure on M defined by letting the left and right R -actions coincide, i.e., $\mathrm{mr}=\mathrm{rm}$ for all $\mathrm{m} \in \mathrm{M}$ and $\mathrm{r} \in \mathrm{R}$, will be called the standard R-module structure on M.
$D \& F$, p. 367.

R-bilinear: Let R be a commutative ring with 1 and let M , N , and L be left R -modules.
The map $\varphi: \mathrm{M} \times \mathrm{N} \rightarrow \mathrm{L}$ is called R-bilinear if it is
R -linear in each factor, i.e., if
$\varphi\left(r_{1} m_{1}+r_{2} m_{2}, \mathrm{n}\right)=r_{1} \varphi\left(m_{1}, \mathrm{n}\right)+r_{2} \varphi\left(m_{2}, \mathrm{n}\right)$, and
$\varphi\left(\mathrm{m}, r_{1} n_{1}+r_{2} n_{2}\right)=r_{1} \varphi\left(\mathrm{~m}, n_{1}\right)+r_{2} \varphi\left(\mathrm{~m}, n_{2}\right)$
for all $\mathrm{m}, m_{1}, m_{2} \in \mathrm{M}, \mathrm{n}, n_{1}, n_{2} \in \mathrm{~N}$ and $r_{1}, r_{2} \in \mathrm{R}$.
$D \& F$, p. 368.

Corollary 12. Suppose R is a commutative ring. Let M and N be two left R-modules and let $\mathrm{M} \otimes_{R} \mathrm{~N}$ be the tensor product of M and N over R, where M is given the standard R-module structure. Then $\mathrm{M} \otimes_{R} \mathrm{~N}$ is a left Rmodule with

$$
\begin{aligned}
\mathrm{r}(\mathrm{~m} \otimes \mathrm{n})=(\mathrm{rm}) \otimes \mathrm{n}=(\mathrm{mr}) \otimes \mathrm{n}=\mathrm{m} \otimes(\mathrm{rn}) \\
D \& F, \mathrm{p} .368 .
\end{aligned}
$$

and the map $t: \mathrm{M} \times \mathrm{N} \rightarrow \mathrm{M} \otimes_{R} \mathrm{~N}$ with $\mathrm{t}(\mathrm{m}, \mathrm{n})=\mathrm{m} \otimes \mathrm{n}$ is an R-bilinear map. If L is any left R-module then there is a bijection
$\left\{\begin{array}{c}\mathrm{R} \text { - bilinear maps } \\ \varphi: \mathrm{M} \times \mathrm{N} \rightarrow \mathrm{L}\end{array}\right\} \leftrightarrow\left\{\begin{array}{c}\mathrm{R}-\text { module homomorphisms } \\ \Phi: \mathrm{M} \otimes_{R} \mathrm{~N} \rightarrow \mathrm{~L}\end{array}\right\}$
where the correspondence between φ and Φ is given by the commutative diagram

tensor product theorem 13: Let M, M ' be right
R -modules, let N, N ' be left R-modules, and suppose $\varphi: \mathrm{M} \rightarrow \mathrm{M}^{\prime}$ and $\psi: \mathrm{N} \rightarrow \mathrm{N}^{\prime}$ are R-module homomorphisms.
(1) There is a unique group homomorphism, denoted by $\varphi \otimes \psi$, mapping $\mathrm{M} \otimes_{R} \mathrm{~N}$,into $\mathrm{M}^{\prime} \otimes_{R} \mathrm{~N}^{\prime}$ such that $(\varphi \otimes \psi)(\mathrm{m} \otimes \mathrm{n})=\varphi(\mathrm{m}) \otimes \psi(\mathrm{n})$ for all $\mathrm{m} \in \mathrm{M}$ and $n \in N$.
(2) If M, M ' are also (S, R)-bimodules for some ring S and φ is also an S-module homomorphism, then $\varphi \otimes \psi$ is a homomorphism of left S-modules. In particular, if R is commutative then $\varphi \otimes \psi \mathrm{f}$ is always an R -module homomorphism for the standard R-module structures.
$D \& F$, p. 370.
corollary 12 cont.
R-bilinear
tensor product theorem 13
(3) If $\lambda: \mathrm{M}^{\prime} \rightarrow \mathrm{M}^{\prime \prime}$ and $\mu: \mathrm{N}^{\prime} \rightarrow \mathrm{N}^{\prime \prime}$ are R-module homomorphisms then $(\lambda \otimes \mu) \mathrm{o}(\varphi \otimes \psi)=(\lambda \circ \varphi) \otimes(\mu \circ \psi)$.
associativity of the tensor product theorem 14*: Suppose M is a right R -module, N is an (R, T)-bimodule, and L is a left T-module. Then there is a unique isomorphism
(M ®RN) ®TL $;:::: 1$ M $®$ ($\mathrm{N} ® T \mathrm{~L})$
of abelian groups such that $(m ® n) \circledR 1 \square m ®(n ® 1)$. If M is an (S, R)-bimodule. then this is an isomorphism of S-modules.

