R-algebra: Let R be a commutative ring with identity. An R-algebra is a ring A with identity together with a ring homomorphism $f : R \to A$ mapping 1_R to 1_A such that the subring f(R) of A is contained in the center of A.

D&F, p. 342.

Definitions. Let R be a ring and let M and N be R-modules.

(1) A map (φ : M \rightarrow N is an R-module homomorphism if it respects the R-module structures of M and N, i.e.,

(a) $\varphi(x + y) = \varphi(x) + \varphi(y)$, for all x, y \in M and (b) $\varphi(rx) = r\varphi(x)$, for all $r \in R, x \in M$.

(2) An R-module homomorphism is an isomorphism (of R-modules) if it is both injective and surjective. The modules M and N are said to be isomorphic, denoted $M \cong N$, if there is some R-module isomorphism $\varphi: M \rightarrow N$.

D&F, p. 345.

If A and B are two R-algebras, an *R-algebra homomorphism (or isomorphism)* is a ring homomorphism (isomorphism, respectively) $\varphi: A \rightarrow B$ mapping 1_A to 1_B such that $\varphi(r \cdot a) = r \cdot \varphi(a)$ for all $r \in R$ and $a \in A$. *D & F*, p. 343. *R-module homomorphism and isomorphism definitions continued*

(3) If φ : M \rightarrow N is an R -module homomorphism, let ker $\varphi = \{m \in M \mid \varphi(m) = 0\}$ (the kernel of φ) and let $\varphi(M) = \{n \in N \mid n = \varphi(m) \text{ for some } m \in M\}$ (the image of φ , as usual).

(4) Let M and N be R-modules and define Hom_R (M, N) to be the set of all R-module homomorphisms from M into N .

D&F, p. 345.

R-module homomorphism (isomorphism)

R-algebra

murraycross.com/algebra2.html

murraycross.com/algebra2.html

R-module homomorphism (isomorphism) *continued*

murraycross.com/algebra2.html

R-algebra homomorphism (isomorphism)

murraycross.com/algebra2.html

Proposition 2: Let M, N and L be R-modules.

(1) A map φ : M \rightarrow N is an R-module homomorphism if and only if $\varphi(rx + y) = r\varphi(x) + \varphi(y)$ for all x, y \in M and all r \in R.

(2) Let φ , ψ be elements of Hom_R (M, N). Define $\varphi + \psi$ by $(\varphi + \psi)(m) = \varphi(m) + \psi(m)$ for all $m \in M$. Then $\varphi + \psi \in \text{Hom}_R(M, N)$ and with this operation Hom_R(M, N) is an abelian group. If R is a commutative ring then for $r \in R$ define $r\varphi$ by $(r\varphi)(m) = r(\varphi(m))$ for all $m \in M$. D& F, p. 346. *Endomorphism Ring:* The ring Hom_R(M, M) is called the *endomorphism ring of M* and will often be denoted by EndR(M), or just End(M) when the ring R is clear from the context. Elements of End(M) are called *endomorphisms.*

D&F, p. 347.

Proposition 2 cont.:

- (2) cont. Then $r\varphi \in Hom_R(M, N)$ and with this action of the commutative ring R the abelian group $Hom_R(M, N)$ is an R-module.
- (3) If $\varphi \in \text{Hom}_{\mathbb{R}}(L, M)$ and $\psi \in \text{Hom}_{\mathbb{R}}(M, N)$ then $\psi \circ \varphi \in \text{Hom}_{\mathbb{R}}(L, N)$.
- (4) With addition as above and multiplication defined as function composition, $Hom_R(M, M)$ is a ring with 1. When R is commutative $Hom_R(M, M)$ is an R-algebra. D & F, p. 347.

Proposition 3: Let R be a ring, let M be an R-module and let N be a submodule of M. The (additive, abelian) quotient group M/N can be made into an R -module by defining an action of elements of R by r(x + N) = (rx) + N, for all $r \in R$, $x + N \in M/N$. The natural projection map $\pi: M \to M/N$ defined by $\pi(x) = x + N$ is an R-module homomorphism with kernel N.

D&F, p. 348.

proposition 2

murraycross.com/algebra2.html

endomorphism ring

murraycross.com/algebra2.html

proposition 2 cont.

murraycross.com/algebra2.html

proposition 3

murraycross.com/algebra2.html

Sum of 2 submodules: Let A, B be submodules of the Rmodule M. The sum of A and B is the set $A + B = \{a + b \mid a \in A, b \in B\}$. *D & F*, p. 349.

Module Isomorphism Theorems cont.

(4) (*Fourth or Lattice Isomorphism Theorem*) Let N be a submodule of the R-module M. There is a bijection between the submodules of M which contain N and the submodules of M/N. The correspondence is given by $A \leftrightarrow A/N$, for all $A \supseteq N$. This correspondence commutes with the processes of taking sums and intersections (i.e., is a lattice isomorphism between the lattice of submodules of M/N and the lattice of submodules of M which contain N). D & F, p. 349.

Module Isomorphism Theorems

(1) (*First Isomorphism Theorem for Modules*) Let M, N be R-modules and let φ : M \rightarrow N be an R-module homomorphism. Then ker φ is a submodule of M, and M/ker $\varphi \cong \varphi(M)$.

(2) (Second Isomorphism Theorem) Let A, B be submodules of the R-module M. Then $(A + B)/B \cong A/(A \cap B)$.

(3) (*Third Isomorphism Theorem*) Let M be an R-module, and let A and B be submodules of M with $A \subseteq B$. Then $(M/A)/(B/A) \cong M/B$. D & F, p. 349. Definition. Let M be an R-module and let $N_1, N_2, ..., N_n$ be submodules of M. (*D* & *F*, p. 351)

(1) The sum of N_1, N_2, \ldots, N_n is the set of all finite sums of elements from the sets N_n : $\{a_1 + a_2 + \cdots + a_n \mid a_i \in N_i; \text{ for all } i\}$. Denote this sum by $N_1 + N_2 + \ldots, N_n$.

(2) For any subset A of M let $RA = \{r_1a_1 + r_2a_2 + \dots + r_ma_m \mid r_1, \dots, r_m \in \mathbb{R}, a_1, \dots, a_m \in A, m \in \mathbb{Z}^+\}$ (where by convention $RA = \{0\}$ if $A = \emptyset$). If A is the finite set $\{a_1, \dots, a_m\}$ we shall write $r_1a_1 + r_2a_2 + \dots + r_na_n$ for RA. Call RA the submodule of M generated by A. module isomorphism theorems

sum of 2 submodules

murraycross.com/algebra2.html

murraycross.com/algebra2.html

submodule definitions

murraycross.com/algebra2.html

module isomorphism theorems

murraycross.com/algebra2.html

If N is a submodule of M (possibly N = M) and N = RA, for some subset A of M, we call A a set of generators or generating set for N, and we say N is generated by A.

(3) A submodule N of M (possibly N = M) is finitely generated if there is some finite subset A of M such that N = RA, that is, if N is generated by some finite subset.

(4) A submodule N of M (possibly N = M) is cyclic if there exists an element $a \in M$ such that N = Ra, that is, if N is generated by one element: $N = Ra = \{ra \mid r \in R\}$. D & F, p. 351. proposition 5: Let $N_1, ..., N_k$ be submodules of the R-module M. Then the following are equivalent:

- (1) The map $\pi: N_1 \times \cdots \times N_k \to N_1 + \cdots + N_k$ defined by $\pi(a_1, \dots, a_k) = a_1 + \cdots + a_k$ is an isomorphism (of R-modules): $N_1 + \cdots + N_k \cong N_1 \times \cdots \times N_k$.
- (2) $N_j \cap (N_1 + \cdots + N_{j-1} + N_{j+1} + \cdots + N_k) = 0$ for all $j \in \{1, 2, \dots, k\}$.
- (3) Every $x \in N_1 + \cdots + N_k$ can be written uniquely in the form $a_1 + \cdots + a_k$ with $a_i \in N_i$. $D \& F_k$ p. 353.

direct product of modules: Let $M_1, ..., M_k$ be a collection of R-modules. The collection of k-tuples $(m_1, ..., m_k)$ where $m_i \in M_i$ with addition and action of R defined componentwise is called the direct product of $M_1, ..., M_k$, denoted $M_1 \times ... \times M_k$.

D&F, p. 353.

Definition. An R-module F is said to be *free* on the subset A of F if for every nonzero element x of F, there exist unique nonzero elements $r_1, ..., r_n$ of R and unique $a_1, ..., a_n$ in A such that $x = r_1a_1 + r_2a_2 + \cdots + r_na_n$, for some $n \in \mathbb{Z}^+$. In this situation we say A is a basis or set of free generators for F. If R is a commutative ring the cardinality of A is called the rank of F (cf. Exercise 27). D & F, p. 354.

proposition 5

submodule definitions cont.

R-module *free* on one of its subsets

direct product of modules

Theorem 6: For any set A there is a free R-module F(A) on the set A and F(A) satisfies the following universal property: if M is any R-module and $\varphi: A \to M$ is any map of sets, then there is a unique R-module homomorphism $\Phi: F(A) \to M$ such that $\Phi(a) = \varphi(a)$, for all $a \in A$, that is, the following diagram commutes.

D&F, p. 354.

D&F, p. 354.

corollary 7:

(1) If F_1 and F_2 are free modules on the same set A, there is a unique isomorphism between F_1 and F_2 which is the identity map on A.

(2) If F is any free R-module with basis A, then $F \cong F(A)$. In particular, F enjoys the same universal property with respect to A as F (A) does in free R-module theorem. D & F, p. 355.

free R-module theorem 6* cont.:

 $A \rightarrow \text{inclusion} \rightarrow F(A)$ $\searrow \qquad \downarrow$ $\varphi \qquad \Phi$ $\searrow \qquad \downarrow$ MWhen A is the finite set {a₁, ..., a_n}, F(A) = Ra_1 \oplus Ra_2 \oplus $\cdots \oplus Ra_n \cong R^n$. (Compare: Section 6.3, free groups.)

Theorem 8: Let R be a subring of S, let N be a left R-module and let $\iota: N \to S \otimes_R N$ be the R-module homomorphism defined by $\iota(n) = 1 \otimes n$. Suppose that L is any left S-module (hence also an R-module) and that $\varphi: N \to L$ is an R-module homomorphism from N to L. Then there is a unique S-module homomorphism $\Phi: S \otimes_R N \to L$ such that φ factors through Φ , i.e., $\varphi = \Phi \circ \iota$ and the diagram

D&F, p. 362.

corollary 7

theorem 6

theorem 8

theorem 6 cont.

unique module homomorphism theorem 8 cont:*

$$\begin{array}{cccc} \mathsf{N} \to \iota \to & \mathsf{S} \bigotimes_R \mathsf{N} \\ \searrow & \downarrow \\ & \varphi & \Phi \\ & \searrow & \downarrow \\ & & \mathsf{I} \end{array}$$

commutes. Conversely, if $\Phi: S \otimes_R N \to L$ is an S-module homomorphism then $\varphi = \Phi \circ \iota$ is an R-module homomorphism from N to L. D & F, p. 362.

R-balanced: Let M be a right R -module, let N be a left R module and let L be an abelian group (written additively). A map φ : M × N → L is called *R-balanced* or *middle linear with respect to R* if $\varphi(m_1 + m_2, n) = \varphi(m_1, n) + \varphi(m_2, n)$ $\varphi(m, n_1 + n_2) = \varphi(m, n_1) + \varphi(m, n_2)$ $\varphi(m, rn) = \varphi(mr, n)$ for all m, m₁, m₂ ∈ M, n, n₁, n₂ ∈ N, and r ∈ R. *D&F*, p. 365.

Corollary 9. let $\iota: N \to S \otimes_R N$ be the R-module homomorphism defined the *unique module homomorphism theorem**. Then N / ker ι is the unique largest quotient of N that can be embedded in any Smodule. In particular, N can be embedded as an R submodule of some left S -module if and only if ι is injective (in which case N is isomorphic to the R submodule $\iota(N)$ of the S-module $S \otimes_R N$). $D \& F_{\epsilon}$ p. 362. Theorem 10. Suppose R is a ring with 1, M is a right Rmodule, and N is a left R-module. Let $M \otimes_R N$ be the tensor product of M and N over R and let $\iota: M \times N \rightarrow$ $M \otimes_R N$ be the R-balanced map defined above. (1) If $\Phi: M \otimes_R N \rightarrow L$ is any group homomorphism from $M \otimes_R N$ to an abelian group L then the composite map $\varphi = \Phi \circ \iota$ is an R-balanced map from $M \times N$ to L. (2) Conversely, suppose L is an abelian group and $\varphi: M \times N \rightarrow L$ is any R-balanced map. Then there is a unique group homomorphism $\Phi: M \otimes_R N \rightarrow L$ such that φ factors through ι , i.e., $\varphi = \Phi \circ \iota$ as in (1). D & F, p. 365 R-balanced

theorem 8 cont.

theorem 10

corollary 9

Equivalently, the correspondence $\varphi \leftrightarrow \Phi$ in the commutative diagram

(*S*, *R*)-bimodule: Let R and S be any rings with 1. An abelian group M is called an (S, R)-bimodule if M is a left S-module, a right R-module, and s(mr) = (sm)r for all $s \in S, r \in R$ and $m \in M$.

D&F, p. 366.

Corollary 11. Suppose D is an abelian group and $\iota': M \ge N \rightarrow D$ is an R-balanced map such that

(i) the image of ι ' generates D as an abelian group, and

(ii) every R-balanced map defined on $M \times N$ factors through ι' as in Theorem 10.

Then there is an isomorphism f: $M \otimes_R N \cong D$ of abelian groups with $\iota' = f \circ \iota$.

D&F, p. 366.

standard *R*-module structure on *M*: Suppose M is a left (or right) R-module over the commutative ring R. Then the (R, R)-bimodule structure on M defined by letting the left and right R-actions coincide, i.e., mr = rm for all $m \in M$ and $r \in R$, will be called the *standard R -module structure on M*.

D&F, p. 367.

(S, R)-bimodule

theorem 10 cont.

standard R-module structure on M

corollary 11

R-bilinear: Let R be a commutative ring with 1 and let M, N, and L be left R -modules.

The map φ : M × N → L is called *R*-*bilinear* if it is R -linear in each factor, i.e., if

 $\varphi(r_1m_1 + r_2m_2, n) = r_1\varphi(m_1, n) + r_2\varphi(m_2, n), \text{ and } \varphi(m, r_1n_1 + r_2n_2) = r_1\varphi(m, n_1) + r_2\varphi(m, n_2)$ for all m, $m_1, m_2 \in M$, n, $n_1, n_2 \in N$ and $r_1, r_2 \in R$. D & F, p. 368. and the map ι : M × N → M \bigotimes_R N with t(m, n) = m \bigotimes n is an R-bilinear map. If L is any left R-module then there is a bijection

 $\begin{cases} R - \text{bilinear maps} \\ \varphi: M \times N \to L \end{cases} \leftrightarrow \begin{cases} R - \text{module homomorphisms} \\ \Phi: M \otimes_R N \to L \end{cases} \end{cases}$ where the correspondence between φ and Φ is given by the commutative diagram $M \times N \to \iota \to M \otimes_R N$

 \mathbf{Y}

φ `>

D & F, p. 368.

tensor product theorem 13: Let M, M' be right R-modules, let N, N' be left R-modules, and suppose $\varphi: M \to M'$ and $\psi: N \to N'$ are R-module homomorphisms.

- (1) There is a unique group homomorphism, denoted by $\varphi \otimes \psi$, mapping $M \otimes_R N$, into $M' \otimes_R N'$ such that $(\varphi \otimes \psi)(m \otimes n) = \varphi(m) \otimes \psi(n)$ for all $m \in M$ and $n \in N$.
- (2) If M, M' are also (S, R)-bimodules for some ring S and φ is also an S-module homomorphism, then $\varphi \otimes \psi$ is a homomorphism of left S-modules. In particular, if R is commutative then $\varphi \otimes \psi$ f is always an R -module homomorphism for the standard R-module structures. D & F, p. 370.

Corollary 12. Suppose R is a commutative ring. Let M and N be two left R-modules and let $M \otimes_R N$ be the tensor product of M and N over R, where M is given the standard R-module structure. Then $M \otimes_R N$ is a left R-module with

 $r(m \otimes n) = (rm) \otimes n = (mr) \otimes n = m \otimes (rn),$ D & F, p. 368. corollary 12 cont.

R-bilinear

tensor product theorem 13

corollary 12

(3) If $\lambda: M' \to M''$ and $\mu: N' \to N''$ are R-module homomorphisms then $(\lambda \otimes \mu) \circ (\varphi \otimes \psi) = (\lambda \circ \varphi) \otimes (\mu \circ \psi).$

associativity of the tensor product theorem 14*: Suppose M is a right R-module, N is an (R, T)-bimodule, and L is a left T-module. Then there is a unique isomorphism (M ®R N) ®T L ;:;:: M ®R (N ®T L) of abelian groups such that (m ® n) ® l 🛛 m ® (n ® l). If M is an (S, R)-bimodule. then this is an isomorphism of S-modules.